CONCLUSIONS
We reported an in-situ method to manufacture well-aligned open-ended CNTs. The open-
ended structures are the key to the successful assembly of CNTs on substrates by a solder reflow
process. This process is compatible with current microelectronics fabrication sequences and
technology. The distinctive CNT-transfer-technology features are separation of high-temperature
CNT growth and low-temperature CNT device assembly. Field emission testing of the as-
assembled CNT devices indicates good field emission characteristics, with a field enhancement
factor of 4540. CNT transfer technology shows promising applications for positioning of CNTs
on temperature-sensitive substrates, and for the fabrication of field emitters, electrical
interconnects, thermal management structures in microelectronics packaging.
ACKNOWLEDGMENTS
We would like to thank NSF for funding support (DMI-0422553). We also thank Dr.
Yong Ding for HRTEM examinations.
REFERENCES
1. H.J. Dai, J. Kong, et al., J. Phys. Chem. B 103, 11246 (1999).
2. N. Hamada, S. I. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
3. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204
(1992).
4. W. Hoenlein, F. Kreupl, et al., IEEE T. Compon. Pack. T. 27, 629 (2004).
5. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280, 1744 (1998).
6. A. P. Graham, G. S. Duesberg, et al, Diam. Relat. Mater. 13, 1296 (2004).
7. F. Kreupl, A. P. Graham, et al., Microelectron. Eng. 64, 399 (2002).
8. Homma, Y., Yamashita, T., Kobayashi, Y., et al., “Interconnection of Nanostructures
Using Carbon Nanotubes”, Physica B 323, 122-123 (2002).
9. H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu, Phys. Rev. Lett. 95,086601-1 (2005).
10. L. Zhu, Y. Xiu, D. W. Hess, C. P. Wong, Nano Lett. 5, 22641 (2005).
11. C. P. Wong, et al., US Patent (pending).
12. Yu, W. J., et al, Nanotechnol. 16, S291 (2005).
13. J. M. Bonard, et al.,
Phys. Rev. B 67, 115406 (2003).
14. O. J. Lee, and K. H. Lee, Appl. Phys. Lett. 82, 3770 (2003).