
Universal T/B Sca ling Behavior of Heavy Fermion Compounds 9
genceofeffectivemassM
∗
at T → 0 is of crucial im-
portance for projecting possible technological applica-
tions of quantum materials. We have also demonstrated
that the topological fermion condensation theory gives
a good description of the scaling behavior of various HF
compounds. As a result, the theory can be used as well
to evaluate the technological perspectives of quantum
materials. Our results are in good agreement with ex-
perimental observations.
We thank V. A. Khodel for stimulating and fruitful
discussions.
This work was partly supported by U.S. Department
of Energy, Division of Chemical Sciences, Office of Basic
Energy Sciences, Office of Energy Research. J. W. Clark
is indebted to the University of Madeira for gracious
hospitality during periods of extended residence.
1. V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553
(1990).
2. G. E. Volovik, JETP Lett. 53, 222 (1991).
3. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras, and P. Jarillo-Herrero, Nature 556,43
(2018).
4. V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, Phys.
Rep. 249, 1 (1994).
5. G. E. Volovik, JETP Lett. 107, 516 (2018).
6. V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and
K. G. Popov, Phys. Rep. 492, 31 (2010).
7. M. Ya. Amusia, K. G. Popov, V. R. Shaginyan, and
W. A. Stephanowich, Theory of Heavy-Fermion Com-
pounds, Springer Series in Solid-State Sciences,
Springer, Berlin (2015), v. 182.
8. V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W.
Clark, V. A. Khodel, and M. V. Zverev, Phys. Rev. B
93, 205126 (2016).
9. M. Ya. Amusia and V. R. Shaginyan, Stronlgly Corre-
lated Fermi Systems: A new State of Matter, Springer
Tracts in Modern Physics, Springer, Berlin (2020),
v. 283.
10. Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki,
N. Horie, Y. Shimura, T. Sakakibara, A. H. Nevidom-
skyy, and P. Coleman, Science 331 , 316 (2011).
11. T. Tomita, K. Kuga, Y. Uwatoko, P. Coleman, and
S. Nakatsuji, Science 349, 506 (2015).
12. A. Sakai, K. Kitagawa, K. Matsubayashi, M. Iwatani,
and P. Gegenwart, Phys. Rev. B 94, 041106(R) (2016).
13. Y. Komijani and P. Coleman, Phys. Rev. Lett. 122,
217001 (2019).
14. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics,
Part 1, Butterworth-Heinemann, Oxford (1996).
15. V. R. Shaginyan, K. G. Popov, and V. A. Khodel, Phys.
Rev. B 88, 115103 (2013).
16. V. A. Khodel, J. W. Clark, and M. V. Zverev, JETP
Lett. 90, 628 (2010).
17. C. M. Varma, Phys. Rev. Lett. 55, 2723 (1985).
18. V. R. Shaginyan, Phys. Lett. A 249, 237 (1998).
19. D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriks-
son, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev.
Lett. 112, 070403 (2014).
20.S.Link,S.Forti,A.St¨ohr, K. Ks¨uter, M. R¨osner,
D.Hirschmeier,C.Chen,J.Avila,M.C.Asensio,
A. A. Zakharov, T. O. Wehling, A. I. Lichtenstein,
M. I. Katsnelson, and U. Starke, Phys. Rev. B 100,
121407(R) (2019).
21. V. A. Khodel, J. W. Clark, and M. V. Zverev, Physics of
Atomic Nuclei 74, 1237 (2011).
22. L. D. Landau, ZhETF 30, 1058 (1956).
23. J. W. Clark, V. A. Khodel, and M. V. Zverev, Phys. Rev.
B 71, 012401 (2005).
24. E. M. Lifshitz and L. Pitaevskii, Statistical Physics. Part
2, Butterworth-Heinemann, Oxford (2002).
25. V. A. Khodel, M. V. Zverev, and J. W. Clark, JETP
Lett. 81, 315 (2005).
26. V. R. Shaginyan, A. Z. Msezane, K. G. Popov,
G. S. Japaridze, and V. A. Khodel, Phys. Rev. B
87, 245122 (2013).
27. R. Widmer, P. Gr¨oning, M. Feuerbacher, and
O. Gr¨oning, Phys. Rev. B 79, 104202 (2009).
28. K. Deguchi, S. Matsukawa, N. K. Sato, T. Hattori,
K. Ishida, H. Takakura, and T. Ishimasa, Nature Mate-
rials 11, 1013 (2012).
29. T. Fujiwara and T. Yokokawa, Phys. Rev. Lett. 66, 333
(1991).
30. T. Fujiwara, S. Yamamoto, and G. T. de Laissardi`ere,
Phys. Rev. Lett. 71, 4166 (1993).
31. V. R. Shaginyan, V. A. Stephanovich, A. Z. Msezane,
P. Schuck, J. W. Clark, M. Ya. Amusia, G. S. Japaridze,
K. G. Popov, and E. V. Kirichenko, J. Low Temp. Phys.
189, 410 (2017).
32. A. Schr¨oder,G.Aeppli,R.Coldea,M.Adams,O.Stock-
ert, H. v. L¨ohneysen, E. Bucher, R. Ramazashvili, and
P. Coleman, Nature 407, 351 (2000).
33. J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko,
B. M. Bartlett, Y. Qiu, D. G. Nocera, and Y. S. Lee,
Phys. Rev. Lett. 104, 147201 (2010).
34. V. R. Shaginyan, A. Z. Msezane, K. G. Popov,
J. W. Clark, M. V. Zverev, and V. A. Khodel, Phys.
Lett. A 377, 2800 (2013).
35. D. Takahashi, S. Abe, H. Mizuno, D. Tayurskii, K. Mat-
sumoto, H. Suzuki, and Y. Onuki, Phys. Rev. B 67,
180407(R) (2003).
36. J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko,
B. M. Bartlett, Y. Yoshida, Y. Takano, A. Suslov,
Y. Qiu, J.-H. Chung, D. G. Nocera, and Y. S. Lee, Phys.
Rev. Lett. 98, 107204 (2007).
37. V. R. Shaginyan, A. Z. Msezane, and K. G. Popov, Phys.
Rev. B 84, 060401(R) (2011).
38. V. R. Shaginyan, V. A. Stephanovich, A. Z. Msezane,
G. S. Japaridze, J. W. Clark, M. Ya. Amusia, and
E. V. Kirichenko, J. Mater. Sci. 55, 2257 (2020).
JETP Letters