20
defect fields could strongly pin the domains in ultrathin films by electrostatic means, reducing
the switchable P
3
. The 14.4 nm film turns out to have potentially more stable P
3
and it seems that
the thicker films the less likely they will be under the influence of charged defects. During near-
equilibrium cooling, the paraelectric-ferroelectric transition is more prominently smeared in
ultrathin films compared to thicker ones even in the presence of widely seperated charged defect
sites. Still, the depolarizing effects should be expected to compete with defect fields in ultrathin
films in the presence of charged sites as demonstrated. It is obvious that charged defects, when
high in density, can significantly alter the properties but the depolarizing fields also develop
accordingly, dictating the electrical response as well as the domain configuration for films with
dead layers much thicker than a unit cell.
REFERENCES
1. S. Triebwasser, Phys. Rev. 118, 100 (1960).
2. A. P. Levanyuk and A. S. Sigov, “Defects and Structural Phase Transitions”, Volume 6,
in Ferroelectricity and Related Phenomena, edited by W. Taylor, Gordon and Breach
Science Publishers, (1988).
3. W. L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, M. V. Raymond, R. Ramesh and J. T.
Evans, Appl. Phys. Lett. 67, 866 (1995).
4. T. M. Shaw, S. Troiler-McKinstry, P. C, Mcintyre, Ann. Rev. Mat. Sci. 30, 263 (2000).
5. R. Ramesh, S. Aggarwal and O. Auciello, Mat. Sci. Eng. Rep. 32, 191 (2001).
6. C. S. Ganpule, A. L. Roytburd, V. Nagarajan, B. K. Hill, S. B. Ogale, E. D. Williams, R.
Ramesh and J. F. Scott, Phys. Rev. B 65, 014101 (2002).
7. H. Z. Jin and J. Zhu, J. Appl. Phys. 92, 4594 (2002).
8. M.-W. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe and U. Gösele,
Nat. Mater. 3, 87 (2004).
9. X. Ren, Nat. Mater. 3, 91 (2004).
10. (9.5) E. Cockayne and B. P. Burton, Phys. Rev. B, 69, 144116 (2004).
11. D. Balzar, P. A. Ramakrishnan and A. M. Hermann, Phys. Rev. B 70, 092103 (2004).
12. S. P. Alpay, I. B. Misirlioglu, V. Nagarajan, R. Ramesh, Appl. Phys. Lett. 85, 2044
(2004).
13. Y. Xiao, V. B. Shenoy and K. Bhattacharya, Phys. Rev. Lett. 95, 247603 (2005).
14. W. Laguta , A. M. Slipenyuk, I. P. Bykov, M. D. Glinchuk, M. Maglione, D. Michau, J.
Rosa, and L. Jastrabik, Appl. Phys. Lett. 87, 022903 (2005).
15. Y. Zheng, B. Wang and C. H. Woo, Appl. Phys. Lett. 88, 092903 (2006).
16. I. B. Misirlioglu, Mark Aindow, S. P. Alpay, and V. Nagarajan, Appl. Phys. Lett. 88,
102906 (2006).
17. Y. L. Li, S. Y. Hu, S. Choudhury, M. I. Baskes, A. Saxena, T. Lookman, Q. X. Jia, D. G.
Schlom and L. Q. Chen, J. Appl. Phys. 104, 104110 (2008).
18. S. V. Kalinin, S. Jesse, B. J. Rodriguez, Y. H. Chu, R. Ramesh, E. A. Eliseev and A. N.
Morozovska, Phys. Rev. Lett. 100, 155703 (2008).
19. D. Schrade, B.X. Xu, R.Muller and D. Gross, Proc. Appl. Math. Mech. 7, 4040015
(2007).
20. M. J. Haun, Z. Q. Zhuang, E. Furman, S. J. Jang, L. E. Cross, Ferroelectrics 99, 45
(1989).
21. I. B. Misirlioglu, M. B. Okatan and S. P. Alpay, J. Appl. Phys.108, 034105 (2010).