
Acknowledgments The authors would like to acknowledge Mr. Han
Ying and Mr. Kong Zheng of Zhangjiawa Iron Mine for their help in field
investigations. The authors would l ike to acknowledge Mr. Mataita
Charles for his help in polishing the English. The authors would also like
to acknowledge all the reviewers and editors for their great contribution
towards improvements of the manuscript.
Funding information The research presented in this paper was supported
by the Natural Science Foundation of China (Grant No. 51674015) and
Beijing Training Project for the Leading Talents in S & T (Grant No.
Z151100000315014).
References
Cundall PA, Strack ODL (1979) A discrete numerical model for granular
assemblies. Geotechnique 29(1):47–65
Di SJ, Xu WY, Ning Y, Wang W, Wu GY (2011) Macro-mechanical
properties of columnar jointed basaltic rock masses. J Cent S Univ
Techno l 1 8(6):2143–2149. https://doi.org/10.1007/s11771-011-
0955-4
Dowd PA, Martin JA, Xu C, Fowell RJ, Mardia KV (2009) A three-
dimensional fracture network data set for a block of granite. Int J
Rock Mech Min Sci 46(5):811–818. https://doi.org/10.1016/j.
ijrmms.2009.02.001
Huang TH, Chang CS, Yang ZY (1995) Elastic moduli for fractured rock
mass. Rock Mech Rock Eng 28(3):135–144
Ivars DM, Pierce ME, Darcel C, Montes JR, Potyondy DO, Young RP,
Cundall PA (2011) The synthetic rock mass approach for jointed
rock mass modelling. Int J Rock Mech Min Sci 48(2):219–244.
https://doi.org/10.1016/j.ijrmms.2010.11.014
Kang DH, Yun TS, Lau YM, Wang YH (2012) DEM simulation on soil
creep and associated evolution of pore characteristics. Comput
Geotech 39(1):98–106. https://doi.org/10.1016/j.compgeo.2011.09.
003
Kulatilake PHSW, Malama B, Wang J (2001) Physical and particle flow
modeling of jointed rock block behavior under uniaxial loading. Int
J Rock Mech Min Sci 38(5):641–657. http s://doi.org/10.1016/
S1365-1609(01)00025-9
Li YS, Xia CC (2000) Time-dependent tests on intact rocks in uniaxial
compression. Int J Rock Mech Min Sci 37(3):467–475
Li WX, Wang SS, Liu L, Meng QL, Liu XM, Mei SH (2010)
Measurement analyses of rock mass movement and deformation
due to underground mining of deep fractured ore body in
Guanzhuang iron mine. Chin J Rock Mech Eng 29(4):681–688
Li N, Cao P, Yi YL, Zhang XY (2011) Creep properties experiment and
model of deep rock with step loading and unloading. J Cent South
Univ Sci Technol 42(11):3465–3471
Liu L, Wang GM, Chen JH, Yang S (2013) Creep experiment and rheo-
logical model of deep saturated rock. Trans Nonferrous Metals Soc
China 23(2):478–48 3. http s://doi.org/10.1016/S1003-6326(13)
62488-7
Pedersen RR, Simone A, Sluys LJ (2008) An analysis of dynamic fracture
in concrete with a continuum visco-elastic visco-plastic damage
model. Eng Fract Mech 75(13):3782–3805. https://doi.org/10.
1016/j.engfracmech.2008.02.004
Qi YJ, Jiang QH, Wang ZJ, Zhou CB (2012) 3D creep constitutive equa-
tion of modified Nishihara model and its parameters identification.
Chin J Rock Mech Eng 31(2):347–355
She CX (2009) Research on nonlinear viscoelasto-plastic creep model of
rock. Chin J Rock Mech Eng 28(10):2006–2011. https://doi.org/10.
3969/j.issn.1673-9469.2017.04.006
Tao B, Wu FQ, Guo GM, Zhou RG (2005) Flexibility of visco-
elastoplastic model to rheological characteristics of rock and solu-
tion of rheological parameter. Chin J Rock Mech Eng 24(17):3165–
3171
Wang YY, Wang YC (2012) Numerical simulation of creep law in deep
soft rock tunnel under thermal-mechanical-chemical coupling effect.
J China Coal Soc 37(a02):275–279
Wang JC, Chang LS, Chen YJ, Xiao H (2005) 3-D network simulation
and probability damage tensor analysis of joint rock mass in open
iron mines. J Univ Sci Technol Beijing 27:1):1–1):4
Wang T, Lu Q, Li Y, Li HM (2009) Development of contact model in
particle discrete element method. Chin J Rock Mech Eng 28(a02):
4040–4045
Wu SC, Zhou Y, Gao LL, Zhang XP (2010) Application of equivalent
rock mass technique to rock Mass engineering. Chin J Rock Mech
Eng 29(7):1435–
1441
Wu SC, Zhou Y, Gao YT, Misra A (2012) Research on construction
method of stochastic joints 3D-network model of equivalent rock
mass. Chin J Rock Mech Eng 31(a01):3082–3090
Xu C, Dowd P (2010) A new computer code for discrete fracture network
modeling. Comput Geosci 36(3):292–301. https://doi.org/10.1016/j.
cageo.2009.05.012
Xu WY, Wang RB, Wang W, Zhang ZL, Zhang JC, Wang WY (2012)
Creep properties and permeability evolution in triaxial rheological
tests of hard rock in dam foundation. J Cent South Univ 19(1):252–
261. https://doi.org/10.1007/s11771-012-0999-0
Yang SQ, Jiang YZ (2010) Triaxial mechanical creep behavior of sand-
stone. Min Sci Technol 20(3):339–349. https://doi.org/10.1016/
S1674-5264(09)60206-4
Yang SL, Zhang JM, Huang QP (2004) Analysis of creep model of
jointed rock. Rock Soil Mech 25(8):1225–1228
Yang ZW, Jin AB, Wang K, Meng XQ, Gao YJ (2015) Development and
application of a visco-elastoplastic constitutive model in particle
flow code. Rock Soil Mech 36(9):2708–2715. https://doi.org/10.
16285/j.rsm.2015.09.035
Zhang CH, Yu YJ, Yue HL, Zhao QS (2010) Model with random cleats
distribution for coal seams and its application. Rock Soil Mech
31(1):265–270
Zhang HB, Wang ZY, Zheng YL, Duan PJ, Ding SL (2012a) Study on tri-
axial creep experiment and constitutive relation of different rock salt.
Saf Sci 50(4):801–805. https://doi.org/10.1016/j.ssci.2011.08.030
Zhang ZL, Xu WY, Wang W, Wang RB (2012b) Triaxial creep tests of
rock from the compressive zone of dam foundation in Xiangjiaba
Hydropower Station. Int J Rock Mech Min Sci 50(1):133–139.
https://doi.org/10.1016/j.ijrmms.2012.01.003
Zhang Y, Xu WY, Gu JJ, Wang W (2013) Triaxial creep tests of weak
sandstone from fracture zone of high dam foundation. J Cent South
Univ 20(9):2528–2536. https://doi.org/10.1007/s11771-013-1765-7
Zhao YL, Cao P, Wang WJ, Wan W, Liu YK (2009) Viscoelasto-plastic
rheological experiment under circular increment step load and un-
load and nonlinear creep model of soft rocks. J Cent S Univ Technol
16(3):484–491. https://doi.org/10.1007/s11771-009-0082-7
Zhou Y, Wang L, Ding JF, Wu HY (2016) Particle flow code analysis of
multi-scale jointed rock mass based upon equivalent rock mass tech-
nique. Rock Soil Mech 37(7):2085–2095. https://doi.org/10.16285/
j.rsm.2016.07.033
559 Page 8 of 8 Arab J Geosci (2019) 12:559