structures occur more readily in rapidly transforming
ceramic materials.
IV. CONCLUSIONS
Calcium phosphate was deposited in a 0.04 M
Ca(H
2
PO
4
)
2
ÆH
2
O (MCPM) solution on a Ti-6Al-4V
substrate at 333 K (60 C), 10 V, and 80 Torr for 1 hour
and calcined at various temperatures for 4 hours. The
effect of heat treatment on the calcium phosphate
deposits was investigated using DTA/TGA, FT-IR,
XRD, SEM, TEM, and ED. DTA results show that
an exothermic reaction peak at 793 K (520 C) can be
attributed to the crystallization of HAP. The weak
broad arc-form continuum of the exothermic reaction
that exists between 1023 K and 1123 K (750 Cand
850 C) is due to the formation of calcium pyrophos-
phate (Ca
2
P
2
O
7
, CPP) and b-tricalcium phosphate
[Ca(PO
4
)
2
, b-TCP]. The XRD results show that the
as-deposited sample contains phases of DCPD and
HAP. When a sample is calcined at 1073 K (800 C) for
4 hours, the crystallized phases are composed of the
major phases of b-TCP and CPP, and minor phases of
HAP, CaO, anatase, and rutile. When the deposited
sample is calcined at 1273 K (1000 C) for 4 hours, the
reflection intensity of HAP and CPP decreases, but that
of b-TCP increases. The surface image of the
as-deposited sample shows that the DCPD crystals have
a platelike morphology with a smooth, flat, and sharp
edge. After being calcined at 873 K (600 C) for
4 hours, the morphology of HAP crystals becomes
platelike. Granular b-TCP is also observed, which is
caused by the granular b-TCP crystals being converted
from the platelike crystals.
ACKNOWLEDGMENTS
The authors acknowledge the financial support pro-
vided by the National Science Council Taiwan,
Republic of China (Contact No. NSC93-2216-E-151-
005). We also thank Mr. H.Y. Yao for TEM/EDS
experiments, Mr. F.C. Wu for SEM photography, and
Professor M.P. Hung for suggestions on the manu-
script preparation.
REFERENCES
1. R.J. Friedman, T.W. Bauer, K. Grag, M. Jiang, Y.H. An, and
R.A. Draughn: J. Appl. Biomater., 1993, vol. 14, pp. 661–66.
2. H. Oonishi: Biomaterials, 1991, vol. 12, pp. 171–78.
3. H. Oonishi, S. Kushitani, E. Yasukawa, H. Iwaka, L.L. Hench,
J. Wilson, E. Tsuji, and T. Sugihara: Clin. Orthop., 1997, vol. 334,
pp. 316–25.
4. C.E. Misch and F. Dietsh: Implant Dentistry, 1993, vol. 2,
pp. 158–67.
5. B. Koch, J.G.C. Wolke, and K. de Groot: J. Biomed. Mater. Res.,
1990, vol. 24, pp. 665–67.
6. L.G. Ellies, D.G. Nelson, and J.D. Featherstone: Biomaterials,
1992, vol. 13, pp. 313–16.
7. P. Ducheyne, S. Radin, M. Heughebaert, and J.C. Heughebaert:
Biomaterials, 1990, vol. 11, pp. 244–54.
8. I. Zhitomirsky: Mater. Lett., 2000, vol. 42, pp. 262–71.
9. T.V. Vijayaraghavan and A. Bensalem: J. Mater. Sci. Lett., 1994,
vol. 10, pp. 1782–85.
10. M.H.P. Da Silva, J.H.C. Lima, G.A. Soares, C.N. Elias, M.C. de
Andrade, S.M. Best, and I.R. Gibson: Surf. Coat. Technol., 2001,
vol. 137, pp. 270–76.
11. S.H. Wang, W.J. Shih, W.L. Li, M.H. Hon, and M.C. Wang:
J. Euro. Ceram. Soc., 2005, vol. 25, pp. 3287–92.
12. S. Ban and J. Hasegawa: Biomaterials, 2002, vol. 23,
pp. 2965–72.
13. M. Mansol, G. Jime
´
nez, C. Morant, P. Herrero, and J.M.
Maetı
´
nez-Duart: Biomaterials, 2000, vol. 21, pp. 1755–61.
14. J.S. Chen, H.Y. Jaung, and M.H. Hon: J. Mater. Sci.: Mater.
Med., 1998, vol. 9, pp. 297–300.
15. G. Daculsi: Biomaterials, 1998, vol. 19, pp. 1473–78.
16. J.M. Zhang, C.J. Lin, Z.D. Feng, and Z.W. Tian: J. Electroanal.
Chem., 1998, vol. 452, pp. 235–40.
17. M. Schirkhanzaden: J. Mater. Sci. Lett., 1991, vol. 10, pp. 1415–
17.
18. M. Schirkhanzaden: J. Mater. Sci.: Mater. Med., 1998, vol. 9,
pp. 67–72.
19. V.S. Joshi and M.J. Joshi: Cryst. Res. Technol., 2003, vol. 39,
pp. 817–21.
20. M. Manso, M. Langlet, C. Jime
´
nez, and J.M. Martı
´
nez-Duart: Int.
J. Inorg. Mater., 2001, vol. 3, pp. 1153–55.
21. C. Morterra, A. Chiorino, and A. Zecchina: Gazz. Chim. Ital.,
1979, vol. 109, pp. 683–90.
22. C. Combes, C. Rey, and M. Freche: Coll. Surf. B: Biointerfaces,
1998, vol. 11, pp. 15–27.
23. A. Stoch, A. Brozek, S. Blazewicz, W. Jastrzebski, J. Stoch, A.
Adamczky, and I. Ro
´
j: J. Molec. Struct., 2003, vols. 651–653,
pp. 389–96.
24. K.L. Elmore and T.D. Farr:
Ind. Eng. Chem., 1940, vol. 32,
pp. 580–86.
25. M.J. Sienko and R.A. Plane: in Chemistry: Principles and Prop-
erties, McGraw-Hill, Inc., New York, NY, 1996, p. 512.
26. N. Eliaz and M. Eliyaahu: J. Bio. Mater. Res. A, 2006, vol. 80,
pp. 621–34.
27. K. de Groot: Bioceramics of Calcium Phosphate, CRC Press Inc.,
Boca Raton, FL, 1983, pp. 1–32, 79–97.
28. P.N. De Aza, F. Guitian, A. Merlos, E. Lora-Tamayo, and S. De
Aza: J. Mater. Sci.: Mater. Med., 1996, vol. 7, pp. 399–402.
29. F.C.M. Driessens: in Bioceramics of Calcium Phosphate,K.de
Groot, ed., CRC Press Inc., Boca Raton, FL, 1983, p. 2.
30. J. Zhou, X. Zhang, J. Chen, S. Zeng, and K. de Groot: J. Mater.
Sci.: Mater. Med., 1993, vol. 4, pp. 83–85.
31. K. Kamiya, T. Yoko, K. Tanaka, and Y. Fujiyama: J. Mater. Sci.,
1989, vol. 24, pp. 827–32.
32. L.M. Rodrı
´
guez-Lorenzo, M. Vallet-Regı
´
, and J.M.F. Ferreira:
Biomaterials, 2001, vol. 22, pp. 585–88.
33. F.H. Lin, C.C. Lin, C.M. Lu, H.C. Liu, J.S. Sun, and C.Y. Wang:
Biomaterials, 1995, vol. 16, pp. 793–802.
34. N. Koc, M. Timucin, and F. Korkusuz: Ceram. Int., 2004, vol. 30,
pp. 205–11.
35. M.H. Prado Da Silva, J.H.C. Lima, G.A. Soares, C.N. Elias, M.C.
de Andrade, S.M. Best, and I.R. Gibson: Surf. Coat. Technol.,
2001, vol. 137, pp. 270–76.
36. I.R. Gibson, I. Rehman, M.S. Best, and W. Bonfield: J. Mater.
Sci.: Mater. Med., 2000, vol. 12, pp. 799–804.
3516—VOLUME 41A, DECEMBER 2010 METALLURGICAL AND MATERIALS TRANSACTIONS A