203
pressure to make electrical contact. Larger contacts could be run for over 100 cycles with no
significant increase in resistance. In the larger contacts, the current density of Ga was
approximately 200 A/cm
2
. The current density measured using ECR nanoindentation increased
as the applied force increased, whereas that of CNT turfs decreases as the force increased.
However, the values of CNT turfs were significantly higher than that of Ga. Therefore,
electroplated Ga micro droplets and CNT turfs may be used for electrical switches and contacts
because moderate damage that may occur during switching of Ga droplets can be eliminated with
a moderate thermal reflow process, and the CNT turfs can carry high current density under a
very small amount of applied force.
ACKNOWLEDGEMENTS
This work was supported in part (AQ and DFB) by the National Science Foundation
under the NIRT program, grant CMMI-0856436.
REFERENCES
1. A. Witvrouw, H.A.C. Tilmans, and I. De Wolf, Microelectron. Eng. 76, 245 (2004).
2. K. Petersen, Proc. of the IEEE 70, 420 (1982).
3. S. Roy, and M. Mehregany, IEEE MEMS Workshop, 353 (January-February 1995).
4.
E. Hashimoto, Y. Uenishi, and A. Watabe, Proc. Int. Solid-State Sensor Actuator, 361 (June
1995).
5.
J. Kim, W. Shen, L. Latorre, and C.J. Kim, Sensor Actuator A 97-98, 672 (2002).
6. J. Simon, S. Saffer, and C.J. Kim, IEEE MEMS'96 Proc., 515 (1996).
7. M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson, Nature 381, 678-680 (1996).
8 . P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).
9.
J. B. Huang, G. T. Fei, J. P. Shui, P. Cui, and Y. Z. Wang, Phys. Status. Solidi. A 194, 167
(2002).
10. F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhögl, M. Liebau, E. Unger, and W. Hönlein,
Microelecron. Eng. 64, 349-408 (2002).
11. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P.
Hare, P.D. Townsend, K. Prassides, A K. Cheetham, H.W. Kroto, and D.R.M. Walton,
Nature 388, 52-55 (1997).
12. S. Sundararajan and T.R. Bhat, J. Less-common Met., 11, 360-364 (1966).
13. C.M. McCarter, R.F. Richards, S. Mesarovic, C.D. Richards, D.F. Bahr, D. McClain, J. Jiao,
J. Mater. Sci., 41, 7872-7878 (2006).
14. R.D. Johnson, D.F. Bahr, C.D. Richards, R.F. Richards, D. McClain, J. Green, and J. Jiao,
Nanotechnology, 20, 065703, 6 (2009).
15. Y. Kim and D.F. Bahr, Mater. Res. Soc. Proc. 1139, (Boston, MA, 2008) GG03-05.
16 . D.J. Dickrell, and M.T. Dugger, IEEE Trans. Compon. Packag. Technol. 30, 75 (2007).