the use of different vit D dose regimens, attempted corre-
lations with 25OHD instead of active hormone plasma
levels, the effect of renal replacement therapy, and the
possible impact of other pathophysiological pathways that
are related with vit D. Among the latter, the renin-
angiotensin-aldosterone system (RAAS) stands out as a
crucial regulator of intravascular volume and blood pres-
sure in CKD. Calcitriol modulates the RAAS system by
suppressing renin gene and angiotensin-converting en-
zyme expression [14, 15]. Blocking RAAS with
angiotensin-converting enzyme inhibitors or angiotensin
receptor blockers controls arterial hypertension, reduces
proteinuria, and prevents or reverses endothelial dysfunc-
tion and atherosclerosis in patients with CKD [16].
Endothelin (ET)-1-induced signaling pathways in vascular
smooth muscle cells represent another attractive target for
improving cardiovascular morbidity in CKD. ET type A
receptor blockade reduced vascular inflammation and
smooth muscle cell differentiation in rats with CKD [17].
In experimental CKD models, the combination of RAAS
inhibition with ET receptor antagonism ameliorated pro-
teinuria, renal structural changes, and molecular markers of
glomerulosclerosis, renal fibrosis, or inflammation more
effectively than RAAS inhibitors or ET receptor antago-
nists alone [18].
Taken together, the findings of Zhao et al. confirm the
immune-inflammatory modulating capacity of vit D and
expand the molecular basis to further explore its therapeu-
tic potential in CKD. However, whether unveiling the role
of A20 in calcitriol’s renoprotection will lead to more
effective treatment remains to be proven.
Authors’ Contributions PMH and HDS designed and
wrote the paper. Both authors agree with the last version.
COMPLIANCE WITH ETHICAL STANDARDS
Conflict of Interest. The authors declare that they have
no competing interests.
REFERENCES
1. Bikle, D.D. 2014. Vitamin D metabolism, mechanism of action, and
clinical applications. Chemistry & Biology 21 (3): 319–329. https://
doi.org/10.1016/j.chembiol.2013.12.016.
2. Colotta, F., B. Jansson, and F. Bonelli. 2017. Modulation of inflam-
matory and immune responses by vitamin D. Journal of Autoimmu-
nity S0896-84 11 (17): 30 463–30468. https://doi.org/10.1016/
j.jaut.2017.07.007.
3. Yadav, A.K., V. Kumar, V. Kumar, D. Banerjee, K.L. Gupta, and V.
Jha. 2017. The effect of vitamin D supplementation on bone meta-
bolic markers in chronic kidney disease. Journal of Bone and
Mineral Research. https://doi.org/10.1002/jbmr.3314.
4. Akchurin, O.M., and F. Kaskel. 2015. Update on inflammation in
chronic kidney disease. Blood Purification 39 (1–3): 84–92. https://
doi.org/10.1159/000368940.
5. Wolf, M., A. Shah, O. Gutierrez, E. Ankers, M. Monroy, H. Tamez,
D. Steele, Y. Chang, C.A. Camargo Jr., M. Tonelli, and R. Thadhani.
2007. Vitamin D levels and early mortality among incident hemo-
dialysis patients. Kidney International 72 (8): 1004–1013.
6. Zhao H, Xia Y, Gan H.2017. Calcitriol ameliorates angiotensinII-
induced renal injury partly via upregulating A20. Inflammation.
Dec;40:1884–1893. https://doi.org/10.1007/s10753-017-0629-y.
7. Evans, P.C., H. Ovaa, M. Hamon, P.J. Kilshaw, S. Hamm, S. Bauer,
H.L. Ploegh, and T.S. Smith. 2004. Zinc-finger protein A20, a
regulator of inflammation and cell survival, has de-ubiquitinating
activity. The Biochemical Journal 378 (Pt 3): 727–734.
8. Lau, W.L., K. Kalantar-Zadeh, and N.D. Vaziri. 2015. The gut as a
source of inflammation in chronic kidney disease. Nephron 130 (2):
92–98. https://doi.org/10.1159/000381990.
9. Lau, W.L., and N.D. Vaziri. 2017. The leaky gut and altered
microbiome in chronic kidney disease. Journal of Renal Nutrition
27: 458–461. https://doi.org/10.1053/j.jrn.2017.02.010.
10. Honore, P.M., R. Jacobs, E. De Waele, V. Van Gorp, J. De Regt, O.
Joannes-Boyau, W. Boer, and H.D. Spapen. 2015. A fresh look into
the pathophysiology of ischemia-induced complications in patients
with chronic kidney disease undergoing hemodialysis. International
Journal of Nephrology and Renovascular Disease 8: 25–28.
11. Tan, X., X. Wen, and Y. Liu. 2008. Paricalcitol inhibits renal inflam-
mation by promoting vitamin D receptor-mediated sequestration of
NF-kappaB signaling. Journal of the American Society of Nephrol-
ogy 19: 1741–1752. https://doi.org/10.1681/ASN.2007060666.
12. Hu, X., J. Shang, W. Yuan, S. Zhang, Y. Jiang, B. Zhao, Y. Duan, J.
Xiao, and Z. Zhao. 2017. Effects of paricalcitol on cardiovascular
outcomes and renal function in patients with chronic kidney disease:
a meta-analysis. Herz. https://doi.org/10.1007/s00059-017-4605-y .
13. Kendrick, J., E. Andrews, Z. You, K. Moreau, K.L. Nowak, H.
Farmer-Bailey, D.R. Seals, and M. Chonchol. 2017. Cholecalciferol,
calcitriol, and vascular function in CKD: a randomized, double-
blind trial. Clinical Journal of the American Society of Nephrology
12 (9): 1438–1446.
14
. Yuan, W., W. Pan, J. Kon, W. Zheng, F.L. Szeto, et al. 2007. 1,25-
Dihydroxyvitamin D3 suppre sses r enin gene transcription by
blocking the activity of the cyclic AMP response element in the
renin gene promoter. Journal of Biological Chemistry 282 (41):
29821–29830.
15. Lin, M., P. Gao, T. Zhao, Lei He, M. Li, et al. 2016. Calcitriol
regulates angiotensin-converting enzyme and angiotensin
converting-enzyme 2 in diabetic kidney disease. Molecular Biology
Reports 43 (5): 397–406.
16. Werner, C., J. Pöss, and M. Böhm. 2010. Optimal antagonism of the
renin-angiotensin-aldosterone system: do we need dual or triple
therapy? Drugs 70 ( 10) : 1215–1230. https://doi. org/10.2165/
11537910-000000000-00000 Review.
17. Larivière, R., A. Gauthier-Bastien, R.V. Ung, J. St-Hilaire, F. Mac-
Way, D.E. Richard, and M. Agharazii. 2017. Endothelin type a
receptor blockade reduces vascular calcification and inflammation
Honore, and Spapen