996—VOLUME 36A, APRIL 2005 METALLURGICAL AND MATERIALS TRANSACTIONS A
Nb-microalloyed steels has been carried out. The major find-
ings are as follows.
1. A significant degree of scatter in experimentally determined
fracture stress (
F
) values exists for the Nb-microalloyed
TMCR steels investigated. The
F
distribution can be pre-
dicted, with reasonable accuracy, from the coarse grain size
distribution.
2. A CAFE model has been developed using experimental
data (fracture stress distribution) as input. The results
from multiple runs of the model showed that a realistic
prediction of the Charpy ductile-brittle transition behav-
ior could be achieved. In addition, the experimentally
observed scatter in Charpy energy values in the transi-
tion region can also be seen in the model.
3. The CAFE model prediction of the upper shelf ductile
energy and percentage brittle failure for the Charpy impact
test agrees well with the experimental data. The prediction
of the lower shelf brittle energy is not as good due to
computational limitations (Abaqus code) of the current
CAFE model.
ACKNOWLEDGMENTS
The authors thank the Engineering and Physical Sciences
Research Council (EPSRC) for financial support and Corus
UK Ltd. for financial support, provision of test material,
and data.
NOMENCLATURE
c
B
, c
D
strain concentration coefficients for the
ductile and the brittle CA arrays
D parameter of the Rousselier’s model
d grain size
f
0
initial void volume fraction in the Rousselier’s
model
H hardening term in the Rousselier’s model
E Young’s modulus
m Weibull modulus
m
i
Weibull modulus of the FE i
m* the mean Weibull modulus across all FEs in
the plastic zone
P probability of cleavage
P
app
applied load
P
GY
general yield load
t
i
time at increment i
V
i
volume of ith FE
V
0
characteristic volume of material
Y
1
integrity of a FE
Y
2
percentage of brittle phase per FE
Y
m(B)
, Y
m(D)
state of cell m in the brittle or the ductile CA
array
damage variable of the Rousselier’s model
F
critical value of the damage variable
p
effective surface energy
p
eq
equivalent plastic strain
Poisson’s ratio
l
orientation angle of cell l
F
grain misorientation threshold
dimensionless density
1
parameter of the Rousselier’s model
F
local fracture stress
eq
Von Mises equivalent stress
I
the maximum principal stress
m
mean stress
u
reference stress
w
Weibull stress
Y
yield stress
REFERENCES
1. B. Mintz, G. Peterson, and A. Nassar: Ironmaking and Steelmaking,
1994, vol. 21, pp. 215-22.
2. T. Gladman, D. Dulieu, and I.D. McIvor: Microalloying 75, Union
Carbide Corp., New York, NY, 1977, pp. 32-55.
3. B. Mintz, W. B. Morrison, and A. Jones: Met. Technol., 1979, vol. 6,
pp. 252-60.
4. W.E. Duckworth and J.D. Baird: J. Iron Steel Inst., 1969, vol. 207,
pp. 854-71.
5. E.O. Hall: Proc. Phys. Soc., 1951, B64, pp. 747-53.
6. N.J. Petch: J. Iron Steel Inst., 1953, vol. 173, pp. 25-28.
7. T. Lin, A.G. Evans, and R.O. Ritchie: Metall. Trans. A, 1987, vol. 18A,
pp. 641-51.
8. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The
Institute of Materials, London, 1997, p. 62.
9. C.L. Davis and M. Strangwood: J. Mater. Sci., 2002, vol. 37,
pp. 1083-90.
10. M.T. Shehata and J.D. Boyd: in Advances in Physical Metallurgy and
Applications of Steels, Proc. Conf., TMS, Warrendale, PA, 1982,
pp. 229-36.
11. J.H. Chen, L. Zhu, and H. Ma: Acta Metall. Mater., 1990, vol. 38,
pp. 2527-35.
12. J.H. Chen, G.Z. Wang, Z. Wang, L. Zhu, and Y.Y. Gao: Metall. Trans.
A, 1991, vol. 22A, pp. 2287-96.
13. A. From and R. Sandstrom: Mater. Characterization, 1999, vol. 42,
pp. 111-22.
14. S.J. Wu and C.L. Davis: Paper presented at ICSMA13, Budapest, 2003,
Mater. Sci. Eng. A, in press.
15. I.C. Howard, Z.H. Li, M.A. Sheikh, A.H. Sherry, D.P.G. Lidbury, and
D.W. Beardsmore: IMechE Seminar, ‘20 Years of R6’, IMechE HQ,
London, Nov. 20, 1996.
16. M.C. Burstow: Int. J. Pressure Vessels Piping, 2003, vol. 80,
pp. 797-805.
17. I.C. Howard, Z.H. Li, and M.A. Sheikh: Fatigue and Fracture Mechan-
ics, 30th volume, ASTM STP 1360, P.C. Paris and K.L. Jerina, eds.,
ASTM, West Conshohocken, PA, 2000, pp. 152-68.
18. L. Xia and F.S. Shih: J. Mech. Phys. Solids, 1995, vol. 43, pp. 233-59.
19. C. Ruggieri and R.H. Dodds: Int. J. Fracture, 1996, vol. 79, pp. 309-40.
20. L. Xia and F.S. Shih: J. Mech. Phys. Solids, 1996, vol. 44, pp. 603-39.
21. L. Xia and L. Cheng: Int. J. Fracture, 1997, vol. 87, pp. 289-306.
22. F.M. Beremin: Metall. Trans. A, 1983, vol. 14A, pp. 2277-87.
23. A.L. Gurson: J. Eng. Mater. Technol., 1977, vol. 99, pp. 2-15.
24. V. Tvergaard: Int. J. Fracture Mech., 1981, vol. 17, pp. 389-407.
25. G. Rousselier, J.C. Devaux, G. Mottel, and G. Devesa: in Nonlinear
Fracture Mechanics: Volume II—Elastic Plastic Fracture, J.D. Landes,
A. Saxena, and J.G. Merkle, eds., ASTM STP 995, Philadelphia, PA,
1983, pp. 332-54.
26. G. Rousselier: Nucl. Eng. Design, 1987, vol. 105, pp. 97-111.
27. A. Shterenlikht: Ph.D. Thesis, Sheffield University, 2003.
28. J.H. Beynon, S. Das, I.C. Howard, and A. Chterenlikht: in New and
Emerging Computational Methods: Applications to Fracture, Damage
and Reliability, F.W. Brust, ed., ASME, 2002, pp. 229-37.
29. J.H. Beynon, S. Das, I.C. Howard, E.J. Palmiere, and A. Chterenlikht:
in ECF14, Fracture Mechanics Beyond 2000, A. Neimitz, I.V. Rokach,
D. Kocanda, and K. Golos, eds., EMAS Publications, Sheffield, United
Kingdom, 2002, pp. 241-48.
30. A. Shterenlikht and I.C. Howard: Proc. 15th Eur. Conf. of Fracture
(ECF15), KTH, Stockholm, 2004.
31. S.J. Wu and C.L. Davis: Paper presented at the 10th EBSD Conf., Swansea,
United Kingdom, 2003; J. Microsc., 2004, vol. 213, pp. 262-72.
32. S.J. Wu and J.F. Knott: Proc. Conf. on Structural Integrity in the 21st
Century, J. Edwards et al., EMAS Publishing, 2000, pp. 247-55.